Radiographic Quality

OR: "MAKING PRETTY PICTURES"

• Chris Ober, DVM, PhD, DACVR
• 10 February 2011

What is a Good Radiograph?

• You can see everything that you’re supposed to in a given study
• Depends on the intent of the study
 – Thoracic spine?
 – Heart and lungs?
• Patient positioning important, but we’ll leave that for later discussions

Artifacts

• Component of image
 – Not real structure AND/OR
 – Interferes with image interpretation
• Can occur anywhere in the imaging process
 – From the production of electrons to the storing of an image file or anything in between
• We’ll mostly talk about these in lab and in a couple of lectures

Perception

• Be aware of optical illusions
• Mach lines
 – Appear at interfaces of different opacities
 – Can be mistaken for fractures

Reference to Consider

The Grand Plan

• Image Geometry
• Film Density
• Radiographic Contrast
• Image Detail
• Exposure Technique
• Quirks of Digital Radiography
Radiographic Quality

- Image Geometry
- Film Density
- Radiographic Contrast
- Image Detail
- Exposure Technique
- Quirks of Digital Radiography

Basic Points

- Divergent Beam – Photons travel in all directions from the source (focal spot)
- The source has dimensions – not just a point in space
- Photons travel in straight lines
 - Scatter radiation confounds this postulate, which is why scatter is troublesome
- Image is 2D representation of 3D object

Cathode

Larger penumbra = more unsharpness

Basic Points

- Divergent Beam – Photons travel in all directions from the source (focal spot)
- The source has dimensions – not just a point in space
- Photons travel in straight lines
 - Scatter radiation confounds this postulate, which is why scatter is troublesome
- Image is 2D representation of 3D object

Inverse Square Law

- Intensity of X-ray beam
 - Directly proportional to mAs
 - Inversely proportional to square of distance
- Due to divergence of X-ray beam
- If distance doubles, must increase mAs 4x to maintain optical density

\[
\frac{I_1}{I_2} = \left(\frac{d_2}{d_1}\right)^2
\]

Relative Intensity

\[
\text{relative } I_2 = \left(\frac{d_1}{d_2}\right)^2
\]
Inverse Square Law

- Intensity of X-ray beam
 - Directly proportional to mAs
 - Inversely proportional to square of distance
- Due to divergence of X-ray beam
- If distance doubles, must increase mAs 4x to maintain optical density

\[\text{relative } I_2 = \left(\frac{d_1}{d_2} \right)^2 \]

Relative \(I_2 = \left(\frac{40}{80} \right)^2 \)

Inverse Square Law

- Intensity of X-ray beam
 - Directly proportional to mAs
 - Inversely proportional to square of distance
- Due to divergence of X-ray beam
- If distance doubles, must increase mAs 4x to maintain optical density

\[\text{relative } I_2 = \left(\frac{d_1}{d_2} \right)^2 \]

Relative \(I_2 = \left(\frac{1}{2} \right)^2 \)

Inverse Square Law

- Intensity of X-ray beam
 - Directly proportional to mAs
 - Inversely proportional to square of distance
- Due to divergence of X-ray beam
- If distance doubles, must increase mAs 4x to maintain optical density

\[\text{relative } I_2 = \left(\frac{d_1}{d_2} \right)^2 \]

Relative \(I_2 = \frac{1}{4} \)

Heel Effect

- Uneven X-ray beam intensity within field
- Less intensity on anode side of field
 - Some X-rays traveling in that direction are actually absorbed by the target itself
- Position the thick end of the patient toward the cathode

Heel Effect

- Uneven X-ray beam intensity within field
- Less intensity on anode side of field
 - Some X-rays traveling in that direction are actually absorbed by the target itself
- Position the thick end of the patient toward the cathode
Magnification

- Enlargement of the image relative to the actual size of the object
- Size on image determined by:
 - Object size
 - Subject-film distance
 - Tube-film distance

Magnification

- Magnification is BAD
 - Exaggerates size
 - Increases unsharpness (penumbra)
 - Distorts image
- Minimize magnification:
 - Minimize SFD
 - Maximize TFD

Subject-Film Distance

Tube-Film Distance
Magnification & Penumbra

Distortion / Foreshortening

- Misrepresentation of object's shape and position
- Caused by unequal magnification of parts of object

Distortion

Don't Forget …

Silhouette Effect

Summation Sign
Radiographic Quality
- Image Geometry
- Film Density
- Radiographic Contrast
- Image Detail
- Exposure Technique
- Quirks of Digital Radiography

Optical Density
- Evaluate entire image
 - High optical density = black
 - Low optical density = white
- Directly related to how many photons interacted with film

Things Affecting Optical Density
- *** mAs *** – direct and linear
- *** kVp *** – direct but not linear
- Film/screen system
- Processing
- Grid (if technique not modified)
- Proper technique chart is critical
 - More about this in Lab

Optical Density – Too White
- Film periphery (away from the patient) should be BLACK
 - If you can see your finger through the film, it's not black enough
- If periphery not black enough, cause is:
 - mAs too low (underexposure)
 - Inadequate development (underdevelopment)

Optical Density – Not Too White
Optical Density – Too White

• Film periphery (away from the patient) should be BLACK
 – If you can see your finger through the film, it’s not black enough

• If periphery not black enough, cause is:
 – mAs too low (underexposure)
 – Inadequate development (underdevelopment)

Optical Density – Too White

Increase mAs

Inadequate Exposure

• mAs too low
 – Double it
 – Did you put a grid in?
 – Is the tube-film distance too long?
 • Inverse square law
 – Using slower (detail) screen/film combo?
• Obstruction to photons
 – Paper in cassette, 2 films in cassette
• Tube voltage not constant
 – Can be issue with portable units
• Tube problem – call the service guy person

Inadequate Developing

• Developer diluted or mixed incorrectly
 – Replenish developer
 – Replace developer
• Development time too short
• Developer temperature too cold

Poorly exposed or Poorly developed?

• Check the radiographic label
 – This gets “flashed” with light photons
 – Is not part of the initial exposure
• Looks good?
 – Exposure issue
• Also bad?
 – Development issue

Poorly exposed or Poorly developed?

• Check the radiographic label
 – This gets “flashed” with light photons
 – Is not part of the initial exposure
• Looks good?
 – Exposure issue
• Also bad?
 – Development issue
Poorly exposed or Poorly developed?
- Check the radiographic label
 - This gets “flashed” with light photons
 - Is not part of the initial exposure
- Looks good?
 - Exposure issue
- Also bad?
 - Development issue

Optical Density – Too White
- If periphery is black but the anatomy is too white, check the overall detail
- Can’t see anything
 - Increase kVp – need more penetration
- Can see some detail
 - Increase kVp or mAs

Corrected Image

Optical Density – Too Black
- Evaluate small thin bones using a hot light
- Bones visible?
 - kVp okay
 - Too many photons hitting film OR
 - Overdeveloped
- Bones not visible
 - kVp too high
Optical Density – Too Black
Decrease mAs

Optical Density – Too Black
Decrease kVp (& maybe mAs, too)

Too Many Photons Striking Film
• mAs too high
 – Did you remove a grid?
 – Is the tube-film distance too short?
 – Inverse square law
 – Using faster film/screen combo?
• kVp too high
 – Will cause poor contrast, even if blackness OK
• Double exposure
• Line surge
• Fog

Overdeveloped
• Incorrectly mixed developer
 – Replace developer
• Development time too long
• Developer temperature too hot

Corrected Image

Remember!
• Increase mAs → blacker
• Decrease mAs → whiter
• Increase kVp → blacker
• Decrease kVp → whiter
Optical Density Changes

• Changing mAs causes direct linear change in blackness
 – Double mAs → Twice the blackness
 – Halve mAs → Half the blackness
• Doubling mAs is approximately same as increasing kVp 10-15%
• Halving mAs is approximately same as decreasing kVp 10-15%

Optical Density

• If in doubt, err on the side of (SLIGHT) overexposure
 – Information can often be retrieved with a hot light

Radiographic Quality

• Image Geometry
• Film Density
• Radiographic Contrast
• Image Detail
• Exposure Technique
• Quirks of Digital Radiography

Image Contrast

• The color difference between an object and the background
• Determinants:
 – Composition of object and background
 • Calcified nodule in lung – high contrast
 • Soft tissue nodule in fat – low contrast
 – Film characteristics
 • *** kVp ***
 • *** NOT mAs ***

Differential Contrast

Radiographic Contrast

• High Contrast
 – Low latitude
 – Sharp transitions
 – Black & white (short grayscale)
• Low Contrast
 – High latitude
 – Gradual transitions
 – Many gray shades (long grayscale)
Radiographic Contrast

- Subject Contrast
 - Thickness
 - Density
 - Atomic number
 - kVp
- Film Contrast
- Fog & Scatter

Thickness

Whole Tomato
Half Tomato

Tissue Density (kg/m³)

- Air 320
- Fat 910
- ST 1000
- Bone 1850

Tissue Density (kg/m³)

- Air 320
- Fat 910
- ST 1000
- Bone 1850

Atomic Number (Z)

- Air 7.6
- Fat 6.3
- ST 7.4
- Bone 13.8
- Iodine 53
- Barium 56
- Lead 82

Kilovoltage Peak (kVp)

- Low kVp
 - All photons have low energy
 - Only pass through low-density substances

<table>
<thead>
<tr>
<th>Gas</th>
<th>Fat</th>
<th>Soft tissue/Fluid</th>
<th>Mineral</th>
<th>Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Kilovoltage Peak (kVp)

- Higher kVp
 - A few photons have higher energy
 - Those few can get through denser stuff

<table>
<thead>
<tr>
<th>Gas</th>
<th>Fat</th>
<th>Soft tissue/Fluid</th>
<th>Mineral</th>
<th>Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

High kVp
- Many photon energies
- High latitude

Low kVp
- Few photon energies
- High contrast

Technique Basics

- REMEMBER!
- If you don’t like the contrast, change kVp
- BUT that will change blackness, too
- Thus, you’ll likely have to adjust mAs in the opposite direction

- Too much contrast
 - Increase kVp
Technique Basics

- Too much contrast
 - \(\rightarrow \) increase kVp
- Better grayscale (I think), but overexposed
 - \(\rightarrow \) decrease mAs

- Much better

Radiographic Contrast

- Subject Contrast
 - Thickness
 - Density
 - Atomic number
 - kVp
- Film Contrast
- Fog & Scatter

Film Contrast

- High Contrast
- High Latitude

Exposure \(\rightarrow \)

Radiographic Contrast

- Subject Contrast
 - Thickness
 - Density
 - Atomic number
 - kVp
- Film Contrast
- Fog & Scatter

Fog and Scatter

- Nondiagnostic exposure of film
 - Compton scatter
 - Heat
 - Light leaks
 - Pressure
 - Static electricity
- We’ll look artifacts next lecture & in lab
Thoracic Radiographs

- We want long contrast scale (high latitude — many grays)
 - Contrast is already high (soft tissue vs. air)
 - Much pathology of interest is subtle shadings of gray which would be burned out with high contrast technique
- Use relatively HIGH kVp
- Use relatively LOW mAs
 - Keeps blackness appropriate
 - Minimizes motion artifact

Abdominal Radiographs

- We want short contrast scale — fewer grays
 - Body contrast is low — soft tissue vs. fat
 - High contrast technique to improve visualization of differences
- Use relatively LOW kVp
- Use relatively HIGH mAs
 - Keeps blackness appropriate
Abdominal Radiographs

High Contrast – Good High Latitude – Bad

Orthopedic Radiographs

- We want short contrast scale – fewer grays
 - Bone contrast is low – cortical bone vs. medullary bone
 - Soft tissue not as critical (but don’t ignore it)
- Use relatively LOW kVp
- Use relatively HIGH mAs
 - Keeps blackness appropriate

Radiographic Quality

- Image Geometry
- Film Density
- Radiographic Contrast
- Image Detail
- Exposure Technique
- Quirks of Digital Radiography

Detail

- AKA Spatial Resolution
- Ability to discern 2 discrete objects as being distinct
- Measured in line pairs per mm
 - More lp/mm = better resolution
 - Typical radiograph: 7 lp/mm
 - Digital radiograph: 4-5 lp/mm

Detail Influences

- Film
 - Small vs. large silver crystals
 - Thin vs. thick emulsion
 - 1 vs. 2 emulsions
- Screen
 - Small vs. large phosphors
 - Thin vs. thick phosphor layers
- High detail requires higher technique
 - Use as high a detail as you can get away with

Unsharpness (Loss of Detail)

- Screen/Film system
- Scatter radiation
- Low contrast
- Penumbra
 - Focal spot has finite size
 - Acts as multiple point sources of X-rays
 - More severe with greater SFD
Unsharpness (Loss of Detail)

- Screen/Film system
- Scatter radiation
- Low contrast
- Penumbra
 - Focal spot has finite size
 - Acts as multiple point sources of X-rays
 - More severe with greater SFD

Unsharpness (Loss of Detail)

- Motion: Any movement during exposure
 - Patient movement
 - Portable tube movement
- Use shortest exposure time possible

Radiographic Quality

- Image Geometry
- Film Density
- Radiographic Contrast
- Image Detail
- Exposure Technique
- Quirks of Digital Radiography

Importance of Technique

Record what you use for each patient for future reference

Technique Chart Making

- Vary:
 - kVp
 - mAs
- Keep Constant:
 - Film-screen combo
 - Processing
 - Grid
 - X-ray generator
 - Tube-film distance

Measure the thickest part
Minimize Exposure Times

- 1/5 second
- 1/30 second

Adjust the kVp

- Increase 10%
- Decrease 10%

Radiographic Quality

- Image Geometry
- Film Density
- Radiographic Contrast
- Image Detail
- Exposure Technique
- Quirks of Digital Radiography

DR / CR Technique

- Changing kVp and mAs affect detail, NOT contrast and blackness (***)
- Choose the lowest technique that provides acceptable detail / resolution to minimize radiation exposure

DR / CR Technique

Low Technique

Higher Technique

DR / CR Contrast

- Adjustments can be performed on the monitor.
- Allows you to evaluate bone with one setting, then soft tissues with another.
What Have We Learned?

- There are lots of ways that images can lie to us
- Image blackness and contrast might show up on the test, since they were on something like 387 slides
- Radiographs made as the patient jumps off the table are not ideal