Introduction to Digital Radiography [CR/DR], Computed Tomography [CT], and Magnetic Resonance Imaging [MRI]

Daniel A. Feeney DVM, MS
Professor of Veterinary Radiology

College of Veterinary Medicine
University of Minnesota

What Is Digital Radiography?

- Making radiographic images as versatile as pictures from your digital camera
- Making radiographic images visible and storable on a personal computer or a hospital-wide system
- ELIMINATING (or at least minimizing) HARD COPIES???

Food For Thought

Image Viewing Software

Digital Images

- Composed of a matrix of pixels e.g. 512 x 512 pixels, 1024 x 1280, etc
- Pixels = “picture elements”
- Each pixel is assigned a value (number)
- In imaging, the value of each pixel determines the grayness of the pixel [current standard is 256 shades of grey]
Digital Images – Take Home Points

- More bits per pixel will yield more shades of grey (a longer scale) in a displayed image
- The larger the image matrix (for a given area imaged), the greater the spatial resolution (clarity)
- Therefore, increasing the number of pixels (while keeping image area same) will result in smaller pixel size.

Connectivity – the importance of DICOM

- Digital Imaging and Communication in Medicine
- DICOM standard is critical for information exchange between modalities (CR/DR, CT, U/S...), image viewing software, storage devices, and printers
- Provides image and image information standards for ALL modern imaging modalities

DICOM

- Think of DICOM like a JPEG or TIFF file with consistent labeling fields (.dcm)
- DICOM defines the protocols for storing, querying, retrieving, sending, and printing digital images
- DICOM images also contain critical image “header” information
 – Patient ID, name, study date, positioning, etc.
What Is A PACS?
(Picture Archive & Communication System)

- Simplest: a hospital system for digital image distribution and storage
 - Access any patient’s images from any computer
 - Access any patient’s images from home
 - Could include any appropriately formatted digital image (endoscopic or dermatologic pictures)
- Mid-range: a hospital system for the distribution/storage of images and the associated interpretations
 - A Radiology Information System (RIS)
- High-end: fully integrated imaging (RIS), medical record, and hospital information system (HIS)

Components of a PACS

- Imaging modality: CR, DR, MRI, CT, US, NM, etc.
- Hospital intranet [LAN]/internet connections
- Viewing computers/workstations
- Central computer (server)
- Storage components – hard drives, DVD
- Potential interface to the hospital information system (HIS)

Example PACS Configuration

- Hospital
- Film Scanners / Digitizers
- Storage System / PACS Server
- Workstations
- Printer
- Web-based Viewing Stations
- CD/DVD-Burner

University of Minnesota College of Veterinary Medicine PACS

Why Might A Digital System Be Relevant To Private Practice?

- Easy access to current and previous patient imaging data
 - May require transition period [both old films and digital images]
 - May require “incremental digitization” of old films
- Better utilization of tech and doctor time
 - May be offset by the need for computer expertise
 - Less time filing, tracking and retrieving
- No Darkroom
 - No film inventory
 - No hazardous chemicals (disposal and OSHA issues)
 - No automatic processor or hand developing tanks
 - No service contracts
 - Free up space for production or storage

What Would “Going Digital” Enable Me to Do? (that I’m not doing now)

- Improve quality of “marginal” exposures
 - NOT a solution to bad radiographic technique
 - NOT an alternative to quality control
 - Net effect is fewer “retakes”
- Retrieve images from any “enabled” computer
 - From home
 - At a meeting (wireless)
What Would “Going Digital” Enable Me to Do? (that I’m not doing now)

- Easily send images for second opinion
 - Direct internet transfer (ISPs upload speed)
 - NOT an alternative to quality control
 - e.g. send bad images and hope for information
- Easily send images for referral
 - Burn a CD/DVD
 - Direct internet transfer (ISPs upload speed)

Image Viewing (software/workstation)

- Provides tools for image manipulation
 - Magnification
 - Window/leveling
 - Hanging Display
 - Comparative viewing with previous images
 - Image labeling

Computed Tomography [window width]

Computed Tomography [window level]

What Are The Types Of Digital Radiographic Systems?

- CR (computed radiography)
 - Cassette-equivalent (europium-doped barium-fluorohalide crystallized matrix plate)
 - Laser spot scanning → photostimulation luminescence (PSL) → photomultiplier detection
 - X-ray → latent image in plate phosphor → light (PSL) → light detected → analog to digital conversion (ADC) → pixels
- CCD (charge-coupled device)
 - Scintillation phosphor → light → minification via optical coupling lens → CCD device
What Are The Types Of Digital Radiographic Systems?

- Flat Panel Detector
 - DR (direct digital radiography)
 - Amorphous selenium photoconductive layer yields electrons
 - Charges stored in matrix array or storage capacitors
 - DR (indirect digital radiography)
 - CsI (light from X-ray) \(\rightarrow \) photodiode (amorphous silicon) \(\rightarrow \) thin-film transistor storage

Diagram of CR

- Plates have embedded photostimulable phosphors
- Similar to the intensify screen phosphors used in traditional film cassettes
- Used just like film-based cassettes

CR Image Formation

- X-ray production \(\rightarrow \) x-rays thru patient
 \(\rightarrow \) strike plate
- Latent image formation on the phosphor plate
 - Low energy electrons in the phosphors are elevated and trapped in a metastable energy state

CR Image Formation

- Plate is placed in film reader “processor”
- Plate is scanned with a red laser light
- Laser light inputs energy into the plate, knocking the electron out of the trap.
- The electron returns to lower energy level by giving of excess energy as visible light

CR Image Formation

- Visible light energy is detected by a collection of PhotoMultiplier Tubes
- PMT’s amplify the light energy signal
- The analog energy signal is converted to a digital image via an analog to digital converter
- Image is ready for final processing

CR Image Formation

- The image is then computer processed with the appropriate algorithm
 - For example, a thorax image is processed to show bone, soft tissue, fat, and air opacities with appropriate relation contrast
 - A different algorithm would be applied to an abdominal image because of fat/soft tissue mixtures contributing to the image.
What about image resolution in these systems?

- **Spatial:** (line pairs/mm)
 - typical film-screen = +/- 10 lp/mm
 - CR = 2.5 – 5.0 lp/mm
 - DR = 2.5 – 5.0 lp/mm
- **Contrast:**
 - CR better than typical film-screen
 - DR better than typical film-screen

What Are the Costs Of Private Practice-relevant Digital Radiography?

- **CR**
 - Basic $40-75K
- **DR**
 - Basic $75-120K
- **CCD**
 - Basic $35-60K (with new X-ray table)
What Type Of Digital Radiography Is Best For Private Practice?

• CR (computed radiography/cassettes)
 – Moderate Volume (3-6 cases/day)
 – Need for flexibility (horizontal-beam, intra-op)
• DR (flat panel detectors)
 – High volume (> 10 cases/day)
 – Fixed to one machine unless use “portable” system
• CCD (digital camera equivalent under table)
 – Moderate to high volume
 – Fixed to one machine

Advantages of Tele-imaging

➤ Brings a radiologist “into” the clinic
➤ Improves diagnostic yield and accuracy
➤ Improves patient care
➤ Continual CE for the clinic

References
